
NOTE ON CHAPTER 26 OF DAVENPORT’S MULTIPLICATIVE
NUMBER THEORY

STEVE FAN

Abstract. In Chapter 26 of Davenport’s classic book [4], it is shown that every sufficiently
large odd positive integer can be written as the sum of three primes. In this short note we
explain how the method used there can be modified to show that there are infinitely many 3-
term arithmetic progressions in the sequence of primes. The note resulted from the author’s
independent reading of [4, Ch. 26].

In [4, Ch. 26] it is shown that every sufficiently large odd positive integer can be written
as the sum of three primes. This is a consequence of Vinogradov’s asymptotic formula for

r(N) :=
∑

n1+n2+n3=N

Λ(n1)Λ(n2)Λ(n3),

where N is any positive integer. The formula states

r(N) =
1

2
S(N)N2 +O(N2(logN)−A),

where A > 0 is arbitrary but fixed, and S(N) is the singular series for the odd Goldbach
conjecture defined by

S(N) :=
∏
p|N

(
1− 1

(p− 1)2

)∏
p-N

(
1 +

1

(p− 1)3

)
.

In the present note we explain how the method used there can be modified with no difficulty
to show that there are infinitely many (nontrivial) 3-term arithmetic progressions in the
sequence of primes. This was first proved in 1939 by van der Corput [3], which follows
immediately from the following theorem.

Theorem. For every positive integer N , let

f(N) :=
∑

n1,n2,n3≤N
n1+n3=2n2

Λ(n1)Λ(n2)Λ(n3).

Then for any fixed A > 0 we have

f(N) = SN2 +O(N2(logN)−A),

where

S :=
∏
p>2

(
1− 1

(p− 1)2

)
.

We introduce the variable N in the theorem to impose restrictions on the sizes of the
unknowns n1, n2, n3 of the equation n1 + n3 = 2n2. Note also that S is now a positive
number independent of N . From the above theorem we easily derive the following result as
a corollary.
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Corollary. As N →∞, the number of 3-term arithmetic progressions in primes up to N is

1

2
(S + o(1))

N2

(logN)3
.

Proof. Let

AN := {(n1, n2, n3) ∈ Z3 ∩ [1, N ]3 : n1, n2, n3 are prime powers and n1 + n2 = 2n3}

and aN := #AN . It is clear that f(N) ≤ aN(logN)3. By Theorem we obtain

lim
N→∞

aN
N2(logN)−3

≥ S.

Let δ ∈ (0, 1) be an arbitrary positive real number. Then it follows from Theorem that

aN =
∑

(n1,n2,n3)∈AN
ni≤Nδ for some i

1 +
∑

(n1,n2,n3)∈AN
n1,n2,n3>Nδ

1

≤ 3N1+δ + (logN δ)−3
∑

(n1,n2,n3)∈AN
n1,n2,n3>Nδ

Λ(n1)Λ(n2)Λ(n3)

≤ δ−3SN2(logN)−3 +Oδ(N
2(logN)−4).

This implies

lim
N→∞

aN
N2(logN)−3

≤ δ−3S.

Since δ ∈ (0, 1) is arbitrary, we have

lim
N→∞

aN
N2(logN)−3

≤ S.

We have thus proved

aN = (S + o(1))
N2

(logN)3
.

Note that the contribution to aN from the triples (n1, n2, n3) ∈ AN such that not all n1, n2, n3

are prime is at most

3N
∑
pv≤N
v≥2

1 ≤ 3N

log 2

∑
pv≤N
v≥2

log p ≤ 3N logN

log 2
π(
√
N)� N3/2

by Chebyshev’s estimate [10, Theorem 7]. Moreover, the contribution to aN from the triples
(p, p, p) ∈ AN for some prime p ≤ N is

π(N)� N

logN
.

Hence the number of 3-term arithmetic progressions in primes up to N is

1

2

(
aN +O(N3/2) +O

(
N

logN

))
=

1

2
(S + o(1))

N2

(logN)3
.

This completes the proof. �
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More generally, one can study k-term arithmetic progressions in primes for positive integers
k ≥ 2. One may ask whether there are infinitely many k-term arithmetic progressions in
the sequence of primes. The case k = 2 is captured by the prime number theorem [10,
Theorem 6] and the case k = 3 was resolved by van der Corput [3] as mentioned above. It is
interesting to compare this problem to Szemerédi’s theorem and conjecture that primes do
contain arbitrarily long arithmetic progressions. Szemerédi’s theorem, conjectured by Erdős
and Turán [5] in 1936 and proved in full generality by Szemerédi [12] in 1975, asserts that
any subset A of positive integers with positive upper density

lim
N→∞

#(A ∩ [1, N ])

N
> 0

must contain arbitrarily long arithmetic progressions. Unfortunately, since the sequence of
primes has natural density equal to 0, Szemerédi’s theorem does not apply at once. Major
progress was made by Green and Tao [6] in 2008 who proved that for every positive integer
k ≥ 2, the primes contain infinitely many k-term arithmetic progressions. In fact, they
showed that any subset A of primes with positive relative upper density

lim
N→∞

#(A ∩ [1, N ])

π(N)
> 0

must contain infinitely many k-term arithmetic progressions for every k ≥ 2. This is the
celebrated Green-Tao theorem, the proof of which uses an extension of Szemerédi’s theorem
to subsets of pseudorandom integers and depends heavily on deep machinery from ergodic
theory. It is now known [7, 8, 9] that for every k ≥ 2, the number of k-term arithmetic
progressions in primes up to N is

(Sk + o(1))
N2

(logN)k
,

where

Sk :=
1

2(k − 1)

∏
p≤k

1

p

(
p

p− 1

)k−1∏
p>k

(
1− k − 1

p

)(
p

p− 1

)k−1
.

Another conjecture of Erdős and Turán [5] states that any subset A of positive integers with∑
n∈A

1

n
=∞

contains arbitrarily long arithmetic progressions. It is well known [10, Theorem 19] that∑
p 1/p = ∞. Thus the conjecture of Erdős and Turán, if true, would imply at once that

the primes contain arbitrarily long arithmetic progressions. In fact, it is not hard to see that
this conjecture, if true, would include both Szemerédi’s theorem and the Green-Tao theorem
as special cases. For instance, suppose that A is a subset of positive integers with positive
upper density. Then there exist a constant c ∈ (0, 1/2) and a strictly increasing sequence
{Ni}∞i=1 of positive integers such that Ni+1 ≥ 2Ni and A(Ni) > 2cNi for all i ≥ 1, where
A(x) := #(A ∩ [1, x]) for all x ≥ 1. For any x ∈ [Ni, 2Ni] we have

A(x)

x
≥ A(Ni)

2Ni

> c.
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It follows by partial summation that∑
n∈A∩[1,2Nm]

1

n
≥
∫ 2Nm

1

A(x)

x2
dx ≥ c

m∑
i=1

∫ 2Ni

Ni

1

x
dx = mc log 2→∞

as m → ∞. This shows that the Erdős-Turán conjecture implies Szemerédi’s theorem.
By a similar argument together with Chebyshev’s estimate [10, Theorem 7], one can prove
that the Erdős-Turán conjecture also implies the Green-Tao theorem. Unfortunately, the
conjecture does not apply to the set of twin primes, since Brun [2] showed that the sum of
the reciprocals of the twin primes converges. The Erdős-Turán conjecture is currently open.1

Now we describe how to prove Theorem. Like that of estimating r(N), the problem of
estimating f(N) is of complexity one from the point of view of higher order Fourier analysis,
meaning in particular that the circle method will often work effectively. As we shall see, only
modest changes need to be made. The starting point is the observation that

f(N) =

∫ 1

0

S(α)2S(−2α) dα,

where
S(α) :=

∑
n≤N

Λ(n)e(nα)

with e(x) := e2πix for any x ∈ R. Put P := (logN)B and Q := N(logN)−B, where
B := 2A+ 10. To employ the circle method, we define a typical major arc M(q, a) centered
at a/q ∈ Q, where q ≤ P and 1 ≤ a ≤ q with gcd(a, q) = 1, by

M(q, a) :=

{
α ∈ S1 :

∥∥∥∥α− a

q

∥∥∥∥ ≤ 1

Q

}
,

where S1 := R/Z denotes the unit circle and ‖x‖ := min
n∈Z
|x − n|. As usual, let M be the

union of these major arcs and let m := S1 \M.
Consider now the major arc M(q, a). For α ∈M(q, a) we write α = a/q + β. It is proved

in [4, Ch. 26] that

S(α) =
µ(q)

ϕ(q)
T (β) +O(N exp(−c1

√
logN)) (1)

for some constant c1 = c1(B) > 0 depending only on B, where

T (β) :=
∑
n≤N

e(nα).

It follows that

S(α)2 =
µ(q)2

ϕ(q)2
T (β)2 +O(N2 exp(−c1

√
logN)).

If 2 - q, then we have similarly

S(−2α) =
µ(q)

ϕ(q)
T (−2β) +O(N exp(−c1

√
logN)).

1The case k = 3 has recently been settled by Bloom and Sisask [1] as a consequence of their estimate
that r3(N) ≤ N/(logN)1+c for some suitable c > 0, improving Roth’s result [11] that r3(N)� N/ log logN .
Here r3(N) is the size of the largest subset of {1, ..., N} containing no 3-term arithmetic progressions.
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Thus we have

S(α)2S(−2α) =
µ(q)

ϕ(q)3
T (β)2T (−2β) +O(N3 exp(−c1

√
logN)).

On the other hand, if 2 | q, then we replace q by q/2 in the derivation of (1) to get

S(−2α) =
µ(q/2)

ϕ(q/2)
T (−2β) +O(N exp(−c1

√
logN)).

It follows that

S(α)2S(−2α) =
µ(q)2µ(q/2)

ϕ(q)2ϕ(q/2)
T (β)2T (−2β) +O(N3 exp(−c1

√
logN))

= − µ(q)

ϕ(q)3
T (β)2T (−2β) +O(N3 exp(−c1

√
logN)).

Hence the contribution of M(q, a) to f(N) is

(−1)q−1
µ(q)

ϕ(q)3

∫ 1/Q

−1/Q
T (β)2T (−2β) dβ +O(N2 exp(−c2

√
logN)),

where c2 = c2(B) > 0 depends only on B. Therefore, the contribution of M to f(N) is∑
q≤P

(−1)q−1
µ(q)

ϕ(q)2

∫ 1/Q

−1/Q
T (β)2T (−2β) dβ +O(N2 exp(−c3

√
logN)), (2)

where c3 = c3(B) > 0 depends only on B. Following [4, Ch. 26] we see that∫ 1/Q

−1/Q
T (β)2T (−2β) dβ =

∫ 1/Q

0

T (β)2T (−2β) dβ +

∫ 1

1−1/Q
T (β)2T (−2β) dβ

=

∫ 1

0

T (β)2T (−2β) dβ −
∫ 1−1/Q

1/Q

T (β)2T (−2β) dβ

and∣∣∣∣∣
∫ 1−1/Q

1/Q

T (β)2T (−2β) dβ

∣∣∣∣∣ ≤ N

∫ 1−1/Q

1/Q

‖β‖−2 dβ = 2N

∫ 1/2

1/Q

β−2 dβ � N2(logN)−B.

Observe that∫ 1

0

T (β)2T (−2β) dβ = #{(n1, n2, n3) ∈ Z3 ∩ [1, N ]3 : n1 + n2 = 2n3}

=

⌊
N

2

⌋2
+

⌊
N + 1

2

⌋2
=
N2

2
+O(N),

where bxc denotes the integer part of x for any x ∈ R. It follows that∫ 1/Q

−1/Q
T (β)2T (−2β) dβ =

N2

2
+O(N2(logN)−B). (3)
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A well-known result [10, Theorem 327] states

lim
n→∞

ϕ(n)

n1−δ =∞

for any given δ > 0. To see this, note that ϕ is multiplicative and that

ϕ(pm)

pm(1−δ) = pmδ
(

1− 1

p

)
≥ 1

2
pmδ →∞

as pm →∞. Taking δ = 1/(2B) we obtain∑
q>P

1

ϕ(q)2
�
∑
q>P

1

q2(1−δ)
� P−1+2δ = (logN)−B+1.

Hence the series
∞∑
q=1

(−1)q−1
µ(q)

ϕ(q)2

is absolutely convergent. It has the infinite product expansion∏
p

(
1 + (−1)p−1

µ(p)

ϕ(p)2

)
= 2S.

Thus we have ∑
q≤P

(−1)q−1
µ(q)

ϕ(q)2
= 2S +O((logN)−B+1).

Combining this with (2) and (3) we see that the contribution of M to f(N) is∫
M

S(α)2S(−2α) dα = SN2 +O(N2(logN)−B+1). (4)

Now we consider the contribution of m to f(N). Let α ∈ m. By Dirichlet’s theorem on
Diophantine approximation, there exists a/q ∈ Q with q ≤ P and gcd(a, q) = 1 such that
‖α− a/q‖ ≤ 1/qQ. Then∥∥∥∥−2α +

2a

q

∥∥∥∥ = min
n∈Z

∣∣∣∣−2α +
2a

q
+ n

∣∣∣∣ ≤ min
n∈2Z

∣∣∣∣−2α +
2a

q
+ n

∣∣∣∣ = 2

∥∥∥∥α− a

q

∥∥∥∥ ≤ 2

q2
.

Note that the estimate (2) in [4, Ch. 25] is still valid under the weaker assumption that
‖α− a/q‖ � 1/q2. As in [4, Ch. 26], we have P < q ≤ Q,∫ 1

0

|S(α)|2 dα� N logN,

and
S(−2α)� N(logN)−B/2+4.

Hence the contribution of m to f(N) is∫
m

S(α)2S(−2α) dα�
(

max
α∈m
|S(−2α)|

)∫ 1

0

|S(α)|2 dα� N2(logN)−B/2+5. (5)

Combining (4) and (5) and noting that −B/2 + 5 = −A we obtain

f(N) = SN2 +O(N2(logN)−A).
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We remark that the method may be adapted to estimate the number of solutions (p1, ..., pk)
to the linear equation a1p1 + ... + akpk = b with p1, ..., pk ≤ N for k ≥ 2, where a1, ..., ak ∈
Z \ {0} are coprime and do not have the same sign. Naturally, we are led to considering∫ 1

0

S(a1α)S(a2α) · · ·S(akα)e(−bα) dα.

One can define the major arc M and the minor arc m in the same way. The estimation
of the contribution of M is similar but more complicated, where the arithmetical features
of a1, ..., ak play a vital role in determining the main term, while the estimation of the
contribution of m needs slight modifications. Note that∣∣∣∣∫

m

S(a1α)S(a2α) · · ·S(akα)e(−bα) dα

∣∣∣∣ ≤ k∏
j=1

(∫
m

|S(ajα)|k dα
)1/k

by Hölder’s inequality. For each 1 ≤ j ≤ k, we have∫
m

|S(ajα)|k dα ≤ max
α∈m
|S(ajα)|k−2

∫ 1

0

|S(ajα)|2 dα = max
α∈m
|S(ajα)|k−2

∫ 1

0

|S(α)|2 dα.

From here we can proceed as before. However, the method just described may fail to work
when the contribution of m dominates. One such example is the twin prime problem (k = 2,
a1 = −1, a2 = 1, and b = 2), in which case the above estimate for the contribution of m
dominates that of M.
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